import{c as t}from"./@turf-e5dd68ad.js";var i,r={exports:{}};i=r,function(){ // Copyright (c) 2005 Tom Wu // All Rights Reserved. // See "LICENSE" for details. // Basic JavaScript BN library - subset useful for RSA encryption. // Bits per digit var t; // JavaScript engine analysis // (public) Constructor function r(t,i,r){null!=t&&("number"==typeof t?this.fromNumber(t,i,r):null==i&&"string"!=typeof t?this.fromString(t,256):this.fromString(t,i))} // return new, unset BigInteger function o(){return new r(null)} // am: Compute w_j += (x*this_i), propagate carries, // c is initial carry, returns final carry. // c < 3*dvalue, x < 2*dvalue, this_i < dvalue // We need to select the fastest one that works in this environment. // am1: use a single mult and divide to get the high bits, // max digit bits should be 26 because // max internal value = 2*dvalue^2-2*dvalue (< 2^53) var s="undefined"!=typeof navigator;s&&"Microsoft Internet Explorer"==navigator.appName?(r.prototype.am= // am2 avoids a big mult-and-extract completely. // Max digit bits should be <= 30 because we do bitwise ops // on values up to 2*hdvalue^2-hdvalue-1 (< 2^31) function(t,i,r,o,s,h){for(var e=32767&i,n=i>>15;--h>=0;){var f=32767&this[t],u=this[t++]>>15,p=n*f+u*e;s=((f=e*f+((32767&p)<<15)+r[o]+(1073741823&s))>>>30)+(p>>>15)+n*u+(s>>>30),r[o++]=1073741823&f}return s} // Alternately, set max digit bits to 28 since some // browsers slow down when dealing with 32-bit numbers. ,t=30):s&&"Netscape"!=navigator.appName?(r.prototype.am=function(t,i,r,o,s,h){for(;--h>=0;){var e=i*this[t++]+r[o]+s;s=Math.floor(e/67108864),r[o++]=67108863&e}return s},t=26):(// Mozilla/Netscape seems to prefer am3 r.prototype.am=function(t,i,r,o,s,h){for(var e=16383&i,n=i>>14;--h>=0;){var f=16383&this[t],u=this[t++]>>14,p=n*f+u*e;s=((f=e*f+((16383&p)<<14)+r[o]+s)>>28)+(p>>14)+n*u,r[o++]=268435455&f}return s},t=28),r.prototype.DB=t,r.prototype.DM=(1<>>16)&&(t=i,r+=16),0!=(i=t>>8)&&(t=i,r+=8),0!=(i=t>>4)&&(t=i,r+=4),0!=(i=t>>2)&&(t=i,r+=2),0!=(i=t>>1)&&(t=i,r+=1),r} // (public) return the number of bits in "this" // Modular reduction using "classic" algorithm function c(t){this.m=t} // Montgomery reduction function m(t){this.m=t,this.mp=t.invDigit(),this.mpl=32767&this.mp,this.mph=this.mp>>15,this.um=(1<>=16,i+=16),255&t||(t>>=8,i+=8),15&t||(t>>=4,i+=4),3&t||(t>>=2,i+=2),1&t||++i,i} // (public) returns index of lowest 1-bit (or -1 if none) // return number of 1 bits in x function D(t){for(var i=0;0!=t;)t&=t-1,++i;return i} // (public) return number of set bits // A "null" reducer function g(){}function b(t){return t} // Barrett modular reduction function S(t){ // setup Barrett this.r2=o(),this.q3=o(),r.ONE.dlShiftTo(2*t.t,this.r2),this.mu=this.r2.divide(t),this.m=t}c.prototype.convert=function(t){return t.s<0||t.compareTo(this.m)>=0?t.mod(this.m):t},c.prototype.revert=function(t){return t},c.prototype.reduce=function(t){t.divRemTo(this.m,null,t)},c.prototype.mulTo=function(t,i,r){t.multiplyTo(i,r),this.reduce(r)},c.prototype.sqrTo=function(t,i){t.squareTo(i),this.reduce(i)},m.prototype.convert=function(t){var i=o();return t.abs().dlShiftTo(this.m.t,i),i.divRemTo(this.m,null,i),t.s<0&&i.compareTo(r.ZERO)>0&&this.m.subTo(i,i),i} // x/R mod m ,m.prototype.revert=function(t){var i=o();return t.copyTo(i),this.reduce(i),i} // x = x/R mod m (HAC 14.32) ,m.prototype.reduce=function(t){for(;t.t<=this.mt2;)// pad x so am has enough room later t[t.t++]=0;for(var i=0;i>15)*this.mpl&this.um)<<15)&t.DM; // propagate carry for(t[ // use am to combine the multiply-shift-add into one call r=i+this.m.t]+=this.m.am(0,o,t,i,0,this.m.t);t[r]>=t.DV;)t[r]-=t.DV,t[++r]++}t.clamp(),t.drShiftTo(this.m.t,t),t.compareTo(this.m)>=0&&t.subTo(this.m,t)} // r = "x^2/R mod m"; x != r ,m.prototype.mulTo= // r = "xy/R mod m"; x,y != r function(t,i,r){t.multiplyTo(i,r),this.reduce(r)},m.prototype.sqrTo=function(t,i){t.squareTo(i),this.reduce(i)}, // protected r.prototype.copyTo=function(t){for(var i=this.t-1;i>=0;--i)t[i]=this[i];t.t=this.t,t.s=this.s} // (protected) set from integer value x, -DV <= x < DV ,r.prototype.fromInt=function(t){this.t=1,this.s=t<0?-1:0,t>0?this[0]=t:t<-1?this[0]=t+this.DV:this.t=0},r.prototype.fromString=function(t,i){var o;if(16==i)o=4;else if(8==i)o=3;else if(256==i)o=8;// byte array else if(2==i)o=1;else if(32==i)o=5;else{if(4!=i)return void this.fromRadix(t,i);o=2}this.t=0,this.s=0;for(var s=t.length,h=!1,e=0;--s>=0;){var n=8==o?255&t[s]:u(t,s);n<0?"-"==t.charAt(s)&&(h=!0):(h=!1,0==e?this[this.t++]=n:e+o>this.DB?(this[this.t-1]|=(n&(1<>this.DB-e):this[this.t-1]|=n<=this.DB&&(e-=this.DB))}8==o&&128&t[0]&&(this.s=-1,e>0&&(this[this.t-1]|=(1<0&&this[this.t-1]==t;)--this.t} // (public) return string representation in given radix ,r.prototype.dlShiftTo= // (protected) r = this << n*DB function(t,i){var r;for(r=this.t-1;r>=0;--r)i[r+t]=this[r];for(r=t-1;r>=0;--r)i[r]=0;i.t=this.t+t,i.s=this.s} // (protected) r = this >> n*DB ,r.prototype.drShiftTo=function(t,i){for(var r=t;r=0;--r)i[r+e+1]=this[r]>>s|n,n=(this[r]&h)<=0;--r)i[r]=0;i[e]=n,i.t=this.t+e+1,i.s=this.s,i.clamp()} // (protected) r = this >> n ,r.prototype.rShiftTo=function(t,i){i.s=this.s;var r=Math.floor(t/this.DB);if(r>=this.t)i.t=0;else{var o=t%this.DB,s=this.DB-o,h=(1<>o;for(var e=r+1;e>o;o>0&&(i[this.t-r-1]|=(this.s&h)<>=this.DB;if(t.t>=this.DB;o+=this.s}else{for(o+=this.s;r>=this.DB;o-=t.s}i.s=o<0?-1:0,o<-1?i[r++]=this.DV+o:o>0&&(i[r++]=o),i.t=r,i.clamp()} // (protected) r = this * a, r != this,a (HAC 14.12) // "this" should be the larger one if appropriate. ,r.prototype.multiplyTo=function(t,i){var o=this.abs(),s=t.abs(),h=o.t;for(i.t=h+s.t;--h>=0;)i[h]=0;for(h=0;h=0;)t[r]=0;for(r=0;r=i.DV&&(t[r+i.t]-=i.DV,t[r+i.t+1]=1)}t.t>0&&(t[t.t-1]+=i.am(r,i[r],t,2*r,0,1)),t.s=0,t.clamp()} // (protected) divide this by m, quotient and remainder to q, r (HAC 14.20) // r != q, this != m. q or r may be null. ,r.prototype.divRemTo=function(t,i,s){var h=t.abs();if(!(h.t<=0)){var e=this.abs();if(e.t0?(h.lShiftTo(p,n),e.lShiftTo(p,s)):(h.copyTo(n),e.copyTo(s));var c=n.t,m=n[c-1];if(0!=m){var l=m*(1<1?n[c-2]>>this.F2:0),v=this.FV/l,T=(1<=0&&(s[s.t++]=1,s.subTo(g,s)),r.ONE.dlShiftTo(c,g),g.subTo(n,n);n.t=0;){ // Estimate quotient digit var b=s[--d]==m?this.DM:Math.floor(s[d]*v+(s[d-1]+y)*T);if((s[d]+=n.am(0,b,s,D,0,c))0&&s.rShiftTo(p,s),// Denormalize remainder f<0&&r.ZERO.subTo(s,s)}}} // (public) this mod a ,r.prototype.invDigit= // (protected) return "-1/this % 2^DB"; useful for Mont. reduction // justification: // xy == 1 (mod m) // xy = 1+km // xy(2-xy) = (1+km)(1-km) // x[y(2-xy)] = 1-k^2m^2 // x[y(2-xy)] == 1 (mod m^2) // if y is 1/x mod m, then y(2-xy) is 1/x mod m^2 // should reduce x and y(2-xy) by m^2 at each step to keep size bounded. // JS multiply "overflows" differently from C/C++, so care is needed here. function(){if(this.t<1)return 0;var t=this[0];if(!(1&t))return 0;var i=3&t;// y == 1/x mod 2^2 // y == 1/x mod 2^dbits // we really want the negative inverse, and -DV < y < DV // y == 1/x mod 2^16 // last step - calculate inverse mod DV directly; // assumes 16 < DB <= 32 and assumes ability to handle 48-bit ints return(i=(// y == 1/x mod 2^8 i=(// y == 1/x mod 2^4 i=(i=i*(2-(15&t)*i)&15)*(2-(255&t)*i)&255)*(2-((65535&t)*i&65535))&65535)*(2-t*i%this.DV)%this.DV)>0?this.DV-i:-i},r.prototype.isEven= // (protected) true iff this is even function(){return 0==(this.t>0?1&this[0]:this.s)} // (protected) this^e, e < 2^32, doing sqr and mul with "r" (HAC 14.79) ,r.prototype.exp=function(t,i){if(t>4294967295||t<1)return r.ONE;var s=o(),h=o(),e=i.convert(this),n=a(t)-1;for(e.copyTo(s);--n>=0;)if(i.sqrTo(s,h),(t&1<0)i.mulTo(h,e,s);else{var f=s;s=h,h=f}return i.revert(s)} // (public) this^e % m, 0 <= e < 2^32 , // public r.prototype.toString=function(t){if(this.s<0)return"-"+this.negate().toString(t);var i;if(16==t)i=4;else if(8==t)i=3;else if(2==t)i=1;else if(32==t)i=5;else{if(4!=t)return this.toRadix(t);i=2}var r,o=(1<0)for(n>n)>0&&(s=!0,h=f(r));e>=0;)n>(n+=this.DB-i)):(r=this[e]>>(n-=i)&o,n<=0&&(n+=this.DB,--e)),r>0&&(s=!0),s&&(h+=f(r));return s?h:"0"} // (public) -this ,r.prototype.negate=function(){var t=o();return r.ZERO.subTo(this,t),t} // (public) |this| ,r.prototype.abs=function(){return this.s<0?this.negate():this} // (public) return + if this > a, - if this < a, 0 if equal ,r.prototype.compareTo=function(t){var i=this.s-t.s;if(0!=i)return i;var r=this.t;if(0!=(i=r-t.t))return this.s<0?-i:i;for(;--r>=0;)if(0!=(i=this[r]-t[r]))return i;return 0},r.prototype.bitLength=function(){return this.t<=0?0:this.DB*(this.t-1)+a(this[this.t-1]^this.s&this.DM)},r.prototype.mod=function(t){var i=o();return this.abs().divRemTo(t,null,i),this.s<0&&i.compareTo(r.ZERO)>0&&t.subTo(i,i),i},r.prototype.modPowInt=function(t,i){var r;return r=t<256||i.isEven()?new c(i):new m(i),this.exp(t,r)}, // "constants" r.ZERO=p(0),r.ONE=p(1),g.prototype.convert=b,g.prototype.revert=b,g.prototype.mulTo=function(t,i,r){t.multiplyTo(i,r)},g.prototype.sqrTo=function(t,i){t.squareTo(i)},S.prototype.convert=function(t){if(t.s<0||t.t>2*this.m.t)return t.mod(this.m);if(t.compareTo(this.m)<0)return t;var i=o();return t.copyTo(i),this.reduce(i),i},S.prototype.revert=function(t){return t} // x = x mod m (HAC 14.42) ,S.prototype.reduce=function(t){for(t.drShiftTo(this.m.t-1,this.r2),t.t>this.m.t+1&&(t.t=this.m.t+1,t.clamp()),this.mu.multiplyUpperTo(this.r2,this.m.t+1,this.q3),this.m.multiplyLowerTo(this.q3,this.m.t+1,this.r2);t.compareTo(this.r2)<0;)t.dAddOffset(1,this.m.t+1);for(t.subTo(this.r2,t);t.compareTo(this.m)>=0;)t.subTo(this.m,t)} // r = x^2 mod m; x != r ,S.prototype.mulTo= // r = x*y mod m; x,y != r function(t,i,r){t.multiplyTo(i,r),this.reduce(r)},S.prototype.sqrTo=function(t,i){t.squareTo(i),this.reduce(i)};var B,w,M,E=[2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997],R=(1<<26)/E[E.length-1]; // Mix in the current time (w/milliseconds) into the pool function O(){ // Mix in a 32-bit integer into the pool var t;t=(new Date).getTime(),w[M++]^=255&t,w[M++]^=t>>8&255,w[M++]^=t>>16&255,w[M++]^=t>>24&255,M>=I&&(M-=I)} // Initialize the pool with junk if needed. if( // protected r.prototype.chunkSize= // (protected) return x s.t. r^x < DV function(t){return Math.floor(Math.LN2*this.DB/Math.log(t))} // (public) 0 if this == 0, 1 if this > 0 ,r.prototype.toRadix= // (protected) convert to radix string function(t){if(null==t&&(t=10),0==this.signum()||t<2||t>36)return"0";var i=this.chunkSize(t),r=Math.pow(t,i),s=p(r),h=o(),e=o(),n="";for(this.divRemTo(s,h,e);h.signum()>0;)n=(r+e.intValue()).toString(t).substr(1)+n,h.divRemTo(s,h,e);return e.intValue().toString(t)+n} // (protected) convert from radix string ,r.prototype.fromRadix=function(t,i){this.fromInt(0),null==i&&(i=10);for(var o=this.chunkSize(i),s=Math.pow(i,o),h=!1,e=0,n=0,f=0;f=o&&(this.dMultiply(s),this.dAddOffset(n,0),e=0,n=0))}e>0&&(this.dMultiply(Math.pow(i,e)),this.dAddOffset(n,0)),h&&r.ZERO.subTo(this,this)} // (protected) alternate constructor ,r.prototype.fromNumber=function(t,i,o){if("number"==typeof i) // new BigInteger(int,int,RNG) if(t<2)this.fromInt(1);else// force odd for(this.fromNumber(t,o),this.testBit(t-1)||// force MSB set this.bitwiseTo(r.ONE.shiftLeft(t-1),v,this),this.isEven()&&this.dAddOffset(1,0);!this.isProbablePrime(i);)this.dAddOffset(2,0),this.bitLength()>t&&this.subTo(r.ONE.shiftLeft(t-1),this);else{ // new BigInteger(int,RNG) var s=new Array,h=7&t;s.length=1+(t>>3),i.nextBytes(s),h>0?s[0]&=(1<>=this.DB;if(t.t>=this.DB;o+=this.s}else{for(o+=this.s;r>=this.DB;o+=t.s}i.s=o<0?-1:0,o>0?i[r++]=o:o<-1&&(i[r++]=this.DV+o),i.t=r,i.clamp()} // (public) this + a ,r.prototype.dMultiply= // (protected) this *= n, this >= 0, 1 < n < DV function(t){this[this.t]=this.am(0,t-1,this,0,0,this.t),++this.t,this.clamp()} // (protected) this += n << w words, this >= 0 ,r.prototype.dAddOffset=function(t,i){if(0!=t){for(;this.t<=i;)this[this.t++]=0;for(this[i]+=t;this[i]>=this.DV;)this[i]-=this.DV,++i>=this.t&&(this[this.t++]=0),++this[i]}},r.prototype.multiplyLowerTo= // (protected) r = lower n words of "this * a", a.t <= n // "this" should be the larger one if appropriate. function(t,i,r){var o,s=Math.min(this.t+t.t,i);for(r.s=0,// assumes a,this >= 0 r.t=s;s>0;)r[--s]=0;for(o=r.t-this.t;s 0 // "this" should be the larger one if appropriate. ,r.prototype.multiplyUpperTo=function(t,i,r){--i;var o=r.t=this.t+t.t-i;// assumes a,this >= 0 for(r.s=0;--o>=0;)r[o]=0;for(o=Math.max(i-this.t,0);o0)if(0==i)r=this[0]%t;else for(var o=this.t-1;o>=0;--o)r=(i*r+this[o])%t;return r} // (public) 1/this % m (HAC 14.61) ,r.prototype.millerRabin= // (protected) true if probably prime (HAC 4.24, Miller-Rabin) function(t){var i=this.subtract(r.ONE),s=i.getLowestSetBit();if(s<=0)return!1;var h=i.shiftRight(s);(t=t+1>>1)>E.length&&(t=E.length);for(var e=o(),n=0;n>24} // (public) return value as short (assumes DB>=16) ,r.prototype.shortValue=function(){return 0==this.t?this.s:this[0]<<16>>16},r.prototype.signum=function(){return this.s<0?-1:this.t<=0||1==this.t&&this[0]<=0?0:1},r.prototype.toByteArray=function(){var t=this.t,i=new Array;i[0]=this.s;var r,o=this.DB-t*this.DB%8,s=0;if(t-- >0)for(o>o)!=(this.s&this.DM)>>o&&(i[s++]=r|this.s<=0;)o<8?(r=(this[t]&(1<>(o+=this.DB-8)):(r=this[t]>>(o-=8)&255,o<=0&&(o+=this.DB,--t)),128&r&&(r|=-256),0==s&&(128&this.s)!=(128&r)&&++s,(s>0||r!=this.s)&&(i[s++]=r);return i},r.prototype.equals=function(t){return 0==this.compareTo(t)},r.prototype.min=function(t){return this.compareTo(t)<0?this:t},r.prototype.max=function(t){return this.compareTo(t)>0?this:t},r.prototype.and=function(t){var i=o();return this.bitwiseTo(t,l,i),i},r.prototype.or=function(t){var i=o();return this.bitwiseTo(t,v,i),i},r.prototype.xor=function(t){var i=o();return this.bitwiseTo(t,T,i),i},r.prototype.andNot=function(t){var i=o();return this.bitwiseTo(t,y,i),i} // (public) ~this ,r.prototype.not=function(){for(var t=o(),i=0;i> n ,r.prototype.shiftRight=function(t){var i=o();return t<0?this.lShiftTo(-t,i):this.rShiftTo(t,i),i},r.prototype.getLowestSetBit=function(){for(var t=0;t=this.t?0!=this.s:!!(this[i]&1<1){var v=o();for(s.sqrTo(n[1],v);f<=l;)n[f]=o(),s.mulTo(v,n[f-2],n[f]),f+=2}var T,y,d=t.t-1,D=!0,g=o();for(h=a(t[d])-1;d>=0;){for(h>=u?T=t[d]>>h-u&l:(T=(t[d]&(1<0&&(T|=t[d-1]>>this.DB+h-u)),f=r;!(1&T);)T>>=1,--f;if((h-=f)<0&&(h+=this.DB,--d),D)// ret == 1, don't bother squaring or multiplying it n[T].copyTo(e),D=!1;else{for(;f>1;)s.sqrTo(e,g),s.sqrTo(g,e),f-=2;f>0?s.sqrTo(e,g):(y=e,e=g,g=y),s.mulTo(g,n[T],e)}for(;d>=0&&!(t[d]&1<=0?(o.subTo(s,o),i&&h.subTo(n,h),e.subTo(f,e)):(s.subTo(o,s),i&&n.subTo(h,n),f.subTo(e,f))}return 0!=s.compareTo(r.ONE)?r.ZERO:f.compareTo(t)>=0?f.subtract(t):f.signum()<0?(f.addTo(t,f),f.signum()<0?f.add(t):f):f},r.prototype.pow= // (public) this^e function(t){return this.exp(t,new g)},r.prototype.gcd=function(t){var i=this.s<0?this.negate():this.clone(),r=t.s<0?t.negate():t.clone();if(i.compareTo(r)<0){var o=i;i=r,r=o}var s=i.getLowestSetBit(),h=r.getLowestSetBit();if(h<0)return i;for(s0&&(i.rShiftTo(h,i),r.rShiftTo(h,r));i.signum()>0;)(s=i.getLowestSetBit())>0&&i.rShiftTo(s,i),(s=r.getLowestSetBit())>0&&r.rShiftTo(s,r),i.compareTo(r)>=0?(i.subTo(r,i),i.rShiftTo(1,i)):(r.subTo(i,r),r.rShiftTo(1,r));return h>0&&r.lShiftTo(h,r),r},r.prototype.isProbablePrime= // (public) test primality with certainty >= 1-.5^t function(t){var i,r=this.abs();if(1==r.t&&r[0]<=E[E.length-1]){for(i=0;i>>8,w[M++]=255&A;M=0,O()}function x(){if(null==B){for(O(),(B=new L).init(w),M=0;M